# 1、差分&差分矩阵
# AcWing 797. 差分
# AcWing 798. 差分矩阵
import java.util.*;
//ACWing
public class Main {
public static void main(String[] args) {
Main main = new Main();
main.chafeng();
}
int N = 100010;
int a[] = new int[N];
int b[] = new int[N];
void insert(int l, int r, int c) {
b[l] += c;
b[r + 1] -= c;
}
//一维差分
void chafeng() {
Scanner in = new Scanner(System.in);
int n = in.nextInt(), m = in.nextInt();
for (int i = 0; i < n; i++) a[i] = in.nextInt();
for (int i = 0; i < n; i++) insert(i, i, a[i]);
for (int i = 0; i < m; i++) {
int l = in.nextInt();
int r = in.nextInt();
int c = in.nextInt();
insert(l-1, r-1, c);
}
int sum = 0;
for (int i = 0; i < n; i++) {
sum += b[i];
System.out.print(sum + " ");
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import java.util.*;
//ACWing
public class Main {
public static void main(String[] args) {
Main main = new Main();
main.chafengjuzheng();
}
//差分矩阵数组
void insert(int x1,int y1,int x2,int y2,int c){
b[x1][y1]+=c;
b[x2+1][y2+1]+=c;
b[x2+1][y1]-=c;
b[x1][y2+1]-=c;
}
int N=1010;
int a[][]=new int[N][N];
int b[][]=new int[N][N];
void chafengjuzheng(){
Scanner in=new Scanner(System.in);
int n=in.nextInt(),m=in.nextInt(),q=in.nextInt();
for (int i = 1; i <=n; i++) {
for (int j = 1; j <=m; j++) {
a[i][j]=in.nextInt();
insert(i,j,i,j,a[i][j]);
}
}
for (int i = 0; i < q; i++) {
int x1=in.nextInt(),y1=in.nextInt();
int x2=in.nextInt(),y2=in.nextInt();
int c=in.nextInt();
insert(x1,y1,x2,y2,c);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
b[i][j]+=b[i][j-1]+b[i-1][j]-b[i-1][j-1];
System.out.print(b[i][j]+" ");
}
System.out.println();
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
← 1、双指针算法 1、归并排序&逆序对数量 →